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Abstract

This paper is devoted to topology optimization problems for elastic wave propagation. The objective of the study is to
maximize the reflection or the dissipation in a finite slab of material for pressure and shear waves in a range of frequencies.
The optimized designs consist of two or three material phases: a host material and scattering and/or absorbing inclusions.
The capabilities of the optimization algorithm are demonstrated with two numerical examples in which the reflection and
dissipation of ground-borne wave pulses are maximized.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

This work deals with two fundamental optimization problems encountered in the study of elastic wave
propagation through a finite slab of material. Wave propagation can be suppressed if the wave reflection or
the wave dissipation is maximized and in this work these two problems are addressed with the method of
topology optimization. The method is used to find an optimized distribution of inclusions of scattering and/or
absorbing material that maximizes the reflection and/or the dissipation, respectively.

Recently, much work has been devoted to highly reflecting materials and structures created with a periodic
distribution of scattering inclusions—the so-called bandgap materials. If inclusions are distributed periodically
a large reflection of propagating waves can occur due to destructive interference. For a comprehensive
overview see e.g. the recent review paper by Sigalas et al. [1].

Bandgap structures are promising candidates as optimal wave reflecting structures. In Sigmund and Jensen
[2] it was demonstrated that optimized designs are typically periodic-like structures with modifications near the
boundaries that compensate for edge effects. A material optimization problem was also considered in which
the topology of repetitive identical inclusions was optimized. Rupp et al. [3] studied similar problems with a
topology optimization algorithm. Halkjer et al. [4] considered bending waves in beams and plates and
structures with limited spatial dimensions that did not allow for a repetitive periodic structure. Hussein et al.
[5] analyzed one-dimensional wave propagation through a layered medium and used a genetic algorithm to
generate optimized structures.
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Optimization of the dissipation of elastic waves has been far less studied than the reflection/transmission
problem. Planar structures that maximize dissipation of scalar waves was previously demonstrated by the
author [6]. Razansky et al. [7] studied dissipation of acoustic waves and gave bounds for maximal dissipation
in thin and thick dissipative layers. Work has also been done on optimal placement of dampers to reduce
structural dynamic compliance [8,9]. Related work with the method topology optimization were seen in Jog
[10] who studied the forced vibration problem and minimized the dissipated energy and in Wang and Chen [11]
who maximized heat dissipation in cellular structures.

Closely related to this present work are optimization studies related to propagation of electromagnetic
waves. Cox and Dobson [12] studied optimal design of infinite periodic structures with a material distribution
method and maximized the optic (photonic) bandgaps and Jensen and Sigmund [13] studied a finite photonic
bandgap structure and topology optimized the material distribution in a 90° bend so that the transmitted
power through the bend was maximized.

This paper extends the work of Jensen [6] and considers dissipation of elastic waves (pressure and shear) for
multiple frequencies instead of scalar waves at a single frequency. The work of Halkjer et al. [4] is extended to
deal with the multiple frequency case. Furthermore, both optimization problems are extended to allow for the
distribution of three material phases instead of two. The paper is organized as follows: first, the general model
for elastic wave propagation is presented (Section 2), and the formulation of the two optimization problems
are discussed in detail (Section 3). Section 4 describes the parametrization of the design domain with two
continuous design fields, the material interpolation model, and the artificial damping penalization. In Section
5 the numerical implementation of the optimization problem is explained, including boundary conditions,
FEM discretization, and a mathematical formulation of the problem. In Sections 6 and 7 two numerical
examples are presented that demonstrate optimization of the material distribution for maximized reflection
and dissipation of ground-borne wave pulses. Finally, main conclusions are given in Section 8.

2. Elastodynamic model

The computational model is based on the full 3D elastodynamic equations for an inhomogeneous medium.
The 3D model is reduced to a 2D model under the assumption that the waves propagate in the plane and
material properties vary in the same plane.

The 3D elastodynamic equations:

pU=V. X, (1

govern the displacements U = {U(x, t) V(x, ) W(x,1)}" of an elastic medium with position-dependent density
p = p(x). The position vector is denoted x = {x y z}T, and £ = X(x, 7) is the stress tensor.

Eq. (1) is transformed to complex form with the complex variable transformation U — U and £ — £, so
that U = Re(U) and X = Re(X). Time-harmonic motion with frequency w gives a steady-state solution to the
complex version of Eq. (1):

U(x, ) = u(x)e'”, 2)

2(x, 1) = o(x)e”, (3)

in which the displacement amplitude vector u(x) and the stress amplitude tensor ¢(x) are generally complex.
The solution forms (2) and (3) are inserted into the complex version of Eq. (1) to give the standard time-
harmonic elastic wave equation:

V~G+pw2u=0. (4)

With the appropriate boundary conditions Eq. (4) gives the displacement field used as the basis for the
optimization problems introduced in the following section. With a specific solution to the complex equation
(4) the instantaneous displacement and stresses are:

U(x, 1) = Re(u(x)e'’) = u’ cos wt — u' sin wt, (5)
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X(x, f) = Re(o(x)e'™) = ¢’ cos wr — ¢’ sinwt, (6)

where superscripts r and i refer to the real and imaginary parts of the complex variable.
Eq. (4) is simplified by assuming the stresses to be invariant in a single direction (arbitrarily chosen as the
z-direction) and can be written in component form as:

00 yx ao—yx 2,
Ox oy Frou=0, "
aO'Xy ao—yy 2
—_— = 8
ox + ay Fpow =0 Y
0o + 00y: + pa*w =0, 2
ox Oy

with u = {u(x) v(x) w(x)}T. This assumption could be realized, e.g. with a uniform material distribution in the
z-direction and waves that propagate strictly in the (x, y)-plane.
For a linear isotropic elastic medium the stress components are:

Oxx E((l—v)au—i—vav>, (10)

~ (1 +v)(1—2v) ox |y
E Ou Ov
ny:ny:Z(l—i—\))(@)/—i_a)c)’ (11)
E ov Ou
ny_—(1+v)(1—2v) <(l—v)@+v&), (12)
for the coupled in-plane problem, and
E Ow
X2 T RA77 N AL 13
7= = (0 +v) ox (13
E
ow (14)

T4y

for the scalar out-of-plane problem. In the following the coupled problem will be considered. Various
optimization results for the out-of-plane problem can be found e.g. in Refs. [2,6].

3. Optimization problems

Two optimization problems are considered in this paper. The basic setup is displayed in Fig. 1. A plane
elastic wave propagates in a loss-free host material. Within the slab of material, indicated by the vertical
dashed lines, a number of scattering and/or absorbing inclusions cause the incident wave to be partially
reflected and/or possibly dissipated and partially transmitted through the slab. The power balance for the
system is

I=R+T+D, (15)
where 7 is the incident wave power, 7 and R is the transmitted and reflected power, respectively, and D is the
power dissipated due to absorbing inclusions.

3.1. Maximizing reflection
The first optimization problem is to maximize the reflection of the propagating wave with an optimized

distribution of inclusions of one or two scattering materials. Pressure and shear waves at multiple frequencies
are treated but the analysis is restricted to plane waves with normal incidence.
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Fig. 1. Basic setup for the two optimization problems. Incident wave power is denoted 7, transmitted and reflected power 7" and R, and
the dissipated power is D.

The reflection of the wave is found indirectly from the transmitted power at the output boundary I',. The
instantaneous transmitted power (Poynting vector) is defined as (e.g. Ref. [14, p. 133]):

p(x, 1) = {p.(x,0) p,(x,0)}", (16)
where

pux,t) = =2, U -2, V, (17)

p(x,0)=—-2,U—2,V, (18)

is the power in the x- and y-direction, respectively.

Expressions for U and X, taken from Egs. (5)<(6), are inserted into Eqgs. (17)—(18) so that py and p, are
expressed in terms of the computed quantities u and 6. Now, the time-averaged x- and y-components of the
power can be computed as:

2n/w
1) . - L
(X, 1) = %/ (=2 U = 2, V) di = JowRe(io i + i6,.0), (19)
0

2n/w
) . . L
(p,(x,0) = %/0 (=2 U — Z,,V)dt = fwRe(ioy i + i0,,D), (20)
where the notation { ) = w/2n f02 /% dt is introduced and will be ysed in the following. In Egs. (19)—(20) the
overbar denotes complex conjugation. The time-averaged power T transmitted through the output boundary
is now found as:

T=</rzn-pdx>= Fz(px)dx, 21

in which n = {1 0}T is the outward pointing normal vector at I';.

Without dissipation the reflected power R is simply the difference between the time-averaged incident and
transmitted power R = [ — T and the corresponding reflectance R is computed by scaling R with I:

I-T
R="——=1-T, (22)
1

where T = T/i is the transmittance and J is found by evaluating the Poynting vector at the input
boundary I';y:

ip:/r (_szx> dX, (23)
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for a plane pressure (P) wave of normal incidence (pure horizontal motion) and
I, = / (—VZ)) dx, (24)
I

for shear (S) wave (vertical motion). In Section 5 a set of boundary conditions are specified that ensure a unit
magnitude incident wave that propagates away from I'; in both directions. Eqgs. (23)—(24) are evaluated with
these boundary conditions (Egs. (49)—(50)):

7=z, (25)

where /1 is the vertical dimension of the input boundary and Z is the wave impedance, given as Z = Z, for a P
wave and Z = Z, for an S wave, in which:

_ Ehph(l — Vi)
2=\ W T = 2my (26)
_ Eupy,
=\ 2T+ @)

and the subscript & denotes host material which is fixed at the boundary I'y. Thus, the final expression for the
reflectance from the slab of material between I'; and I'; is

1
R=1-— /F 2 Re(i0 17 + i, B)dx, (28)

that takes the value 1 when the wave is fully reflected and 0 with full transmission. The reflectance R will be the
first objective function in the optimization study.

3.2. Maximizing dissipation

An alternative optimization problem is now defined. Another way to hinder propagation of the wave is to
maximize the dissipation of the wave within the slab. A benefit of this is that potential annoyance associated
with the reflected wave can be eliminated.

Naturally, the dissipation of the wave energy is dependent on the damping model. A simple model is mass-
and stiffness-proportional viscous damping. Reasonable agreement with experimental results can be obtained
in large frequency ranges if a suitable combination of these two contributions are used. In this work smaller
frequency ranges are considered and a simple mass-proportional damping model is chosen.

The mass-proportional viscous damping is added directly to the continuous Eq. (1):

pU+pn, U=V E, (29)

where 77, =1n,(x) is a position-dependent damping coefficient. Eq. (29) leads to a time-harmonic wave
equation with a complex density:

V.64 po’u=0, (30)
. Ny
p_p(l 1w). 31)
A power balance is obtained by multiplying both sides of Eq. (29) by the velocities:
U-(p0)+U-(pn,U)=U-(V-%). (32)

The second term on the L.h.s. is the instantaneous point-wise dissipated power:

d(x,1)=pn,U- U, (33)
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which averaged over a wave period yields the time-averaged dissipation:
(d(x, 1)) = S0 pi (i + v). (34)

The second objective function D is defined as the time-averaged dissipation (d(x, 1)) integrated over the total
domain Q. The relative dissipation D is obtained by scaling with the input power /:

D 1 o
D= == h—z/gpnp(uu + vp) dx. (35)

4. Design variables and material interpolation

The design optimization is based on two continuous design fields ¢; and g, that are defined everywhere
within the slab:

01(x) e Rl 0<¢, <1, (36)

0,(x) € R| 0<g,<1. (37)

These two design fields are used to specify and control the point-wise material properties and can, in the
present formulation, be used to distribute three different materials in the slab. For both problems one material
is the host material through which the undisturbed wave propagates and the other two may be scattering and/
or absorbing materials.

Any material property; E, p, v or i, is found by a linear interpolation between the properties of the involved
materials:

aux) = (1 = ¢p)oy + ¢, (1 — @y)o1 + 2302), (38)
in which o is any of the properties. Subscript /4 denotes host material, and subscripts 1 and 2 refer to the two
other materials. A material interpolation scheme such as Eq. (38) is a standard implementation for three-phase
design. See e.g. Bendsee and Sigmund [15, p. 120], for a similar implementation with two materials and void.

From Eq. (38) it can be seen that the design field g, is an indicator of host material (obtained for ¢; = 0) or
inclusion (obtained for ¢, = 1). If an inclusion is specified by g;, the field ¢, then specifies the inclusion type.
Hence, type 1 is found for ¢, =0 (¢; = 1) and type 2 for g, =1 (¢; = 1). Non 0 — 1 values of the design
variables correspond to some intermediate material property that may not be physically realizable. This is not
important in the optimization procedure, but it must be ensured that only 0 — 1 values remain in the finalized
optimized design so that the material properties are well defined.

4.1. Penalization with artificial dissipation

In most implementations of material interpolation models, penalization factors are introduced (SIMP
model) (e.g. Ref. [15, p. 5] ). This is done so that the continuous design variables are likely to take only the
extreme values 0 or 1 in the final design. The SIMP strategy is not used in this work since a constraint on the
amount of one of the material phases is required and for this problem such a constraint is not natural.
Moreover, previous studies on wave propagation problems have shown that maximum material contrasts are
favored so that 0 — 1 optimized designs appear automatically [12,2,4]. However, in the dissipation example
intermediate design variables appear especially with three material phases. In this case a penalization method
is adapted that was originally introduced for optics problems.

In Jensen and Sigmund [16] it was suggested to use artificial damping to penalize intermediate design
variables. An extra damping term was introduced:

Nart = Bo(l — o), (39)
for the case of a single design field ¢. In Eq. (39) f is a damping coefficient and the product ¢(1 — ¢) ensures
that only intermediate design variables cause dissipation of energy. This penalization is similar to the explicit
penalization method introduced by Allaire and Francford [17]. A nice physical interpretation is possible by
imagining the intermediate material as a sponge that soaks up energy.
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Here, this approach is reused and expanded to deal with two design fields:

Nare = Br101((1 = 01) + Broa(1 — 7)), (40)

where the two factors 5, and f, allow for separate penalization of ¢, and ¢, (in the numerical examples
p» = 1). The specific form of Eq. (40) is connected to the definition of the design fields, i.e. if ¢, = 0 host
material is obtained regardless of the value of ¢,. Thus, only if ¢, #0 intermediate values of ¢, should be
penalized. The fraction of the input power that is dissipated due to the artificial damping is

D = 5 [ p0i((1 = 0+ faoall - e)ud + v0)éx. @

where p is given from Eq. (38).

It should be emphasized that the artificial damping approach penalizes intermediate design variables only if
the optimization problem is of the maximization type. With a minimization problem, e.g. minimizing the
reflection, a work-around could be either to reformulate the problem into a maximization problem (e.g.
maximizing the transmission) or alternatively to use a negative artificial damping coefficient ;. The latter
approach, however, lacks an appealing physical interpretation and has not been thoroughly tested.

5. Numerical implementation

The computational model is shown in Fig. 2. The design domain is defined with outer dimensions L X A,
input boundary I'y at x = 0, and output boundary I'; at x = L + 20. Two perfectly matched layers (PMLs) are
added to the computational domain to absorb waves propagating away from the design domain (at arbitrary
angles) in the positive and/or negative x-direction, respectively. The reader is referred to Basu and Chopra [18]
for a comprehensive treatment of PMLs for elastic waves.

5.1. Perfectly matched layers (PML)

PMLs generally ensure a low reflection for all angles of incidence for pressure and shear waves. A good
performance of the absorbing boundary is important since the distribution of inclusions is not known a priori
and a good optimization algorithm can be expected to exploit this. The good performance comes, however, at
the expense of increased computational requirements due to the enlarged domain.

For the computational model in Fig. 2, the governing equations in the PMLs become:

105, 06,y

2
=0 42
e ax ay +phwu > ( )

PML r, |k PML

L+28

Fig. 2. Computational model used for numerical implementation of the optimization algorithm.
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106, 06,y

& ox ay + ppo’n =0, (43)

where the modified stress components are:
6xx:(1—}—\)/7)E(+2vh)<é (1 —Vh)g_z+vhg—jj>’ (44)
&yy:(l—i—vhﬁ—th)Ql —Vh)2;)/+i\’h2z), (46)

in which subscript /4 indicates that the material in the PMLs is host material. The complex variable ¢ is a
function of x:

. [x—Xx* 2
ex)=1 1oc< IR > , 47)
where x* is the x-position of PML layer/real domain interface, and « is the absorption coefficient in the layer.
The total length of the PML domain is L*. Eq. (47) fulfills that ¢ = 1 for x = x*, so that the PML equations
(42)—(43) reduce to the normal wave equations at the interface. The imaginary part of ¢ ensures the dissipation
of the wave. The choice of letting the imaginary part increase with square of the distance from the interface is
empirical but has been shown to yield low reflection values [18]. The coefficient « should be chosen large
enough so that the wave is fully absorbed in the PMLs, but not excessively large so that spurious reflections
occur at the interface. Here, L* = L/2 and o = 50 have been used in the numerical examples.

5.2. Boundary conditions
A non-zero stress amplitude jump at I'; specifies a stress wave propagating away from the boundary in both
directions:
n- (6" —o)=2iw(Z,Uy ZVo)', (48)

where n = {—1 0} is the normal vector pointing away from Q, (6* — ¢7) is the stress jump and U, and V are
the amplitudes of the P and S wave. Thus for a P wave of unit magnitude:

—(a;’x —o0.) =2iwZ,, (49)
and
—(07, — 0y,) = 2iwZ,, (50)

gives a unit magnitude S wave that propagates away from I;.

The wave input boundary condition and the transition to the PMLs are simplified with constant material
properties (host material) at the interface. This is accomplished by moving the design domain a small distance
o (Fig. 2) away from I'; and I'; . The transmitted power is averaged over the small domain instead of
evaluated at the boundary:

1 L+20
T haZs [y

as this simplifies the numerical implementation of the sensitivities (Section 5.3).
A periodic boundary condition is applied for the amplitude fields on the upper boundary:

u(x, 1) = u(x, 0), (52)

as well as zero traction conditions at the outer PML boundaries.

h
T / Re(io il + 10, 0) dy dx, (51)
0
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5.3. FEM discretization and sensitivity analysis
The commercial finite element software package COMSOL is used to discretize the domain and to assemble

and solve the discretized equations. The two displacement fields u, v as well as the two design fields ¢, and g,
are discretized as follows:

N N
wx) =Y Yju, o)=Y v, (53)
i=1 i=1

M M
010 =) djor &= ¢ior (54)
i=1 i=1

in which !, y2, ¢!, $? are the basis functions, N is the number of nodal displacement variables, and M is the
number of nodal design variables. Linear or quadratic basis functions are used for the displacement fields and
linear basis functions is used for the design fields. A regular mesh with nearly quadratic elements is used in all

examples.
The discretized version of Eq. (4) with boundary conditions and PMLs is
S(w)d = f(w), (55)
where
S =K +i0wC — o*M, (56)

is the system matrix and d = {u; up...uy vivs... on )T are the discretized nodal amplitudes, K, C and M is
the stiffness, damping, and mass matrices, respectively, and f is the frequency-dependent load vector.

The vector of design variables y = {0,101, -- 011021022 - - - Qz,M}T is introduced and the sensitivities of the
objective function with respect to these design variables are obtained. Let @ be cither of the two objective
functions considered and let” = d/dy; denote the derivative with respect to the ith design variable. The adjoint
method (e.g. Ref. [19]) leads to the expression for the derivative of the augmented objective function ®y:

Oy=d + 'R +1'R, (57)
where @’ is the derivative of the objective function, 4 is a vector of Lagrangian multipliers, and R’ is the

derivative of the residual of Eq. (55) that vanishes at equilibrium (R = R’ = 0). Straightforward calculations
lead to an equation for the Lagrangian multipliers:

o0 .0d\"
T, _(9®¥ .0®
S*i= (ad’ ladi> , (58)
so that the final expression for the sensitivities become:
¢’=6—¢+Re zTa—Sd ) (59)
0y 0y

The implementation of the sensitivity analysis is facilitated by the use of the COMSOL software, that allows
for an almost automated generation of the derivatives [20].

5.4. Optimization problem formulation

With artificial damping included the overall power balance can be written:
R=1—(T+ D+ Dyn), (60)

where T, D and D, are defined in Egs. (51), (35) and (41). From Eq. (60) it is seen that the artificial damping
reduces R so that intermediate design variables are costly and likely to be penalized from the design.

In the example in Section 6 the wave reflection is maximized. Only scattering inclusions are considered so
there is no real dissipation (D = 0). However, if material damping is added the convergence of the
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optimization algorithm is enhanced and the risk of obtaining a local optimum is reduced [2]. The material
damping is applied using a continuation method in which the optimization procedure is initiated with high
damping which is then gradually removed as the optimization progresses. A reverse procedure is used with the
artificial damping. The optimization is started with a small (or vanishing) artificial damping coefficient f3,
which is then increased slowly.

For the second optimization problem, the power balance (60) is rewritten as:

D=1—(T+ R+ Dan), (61)

from which it is seen that artificial damping penalizes intermediate design variables also when D is maximized.

Both optimization problems are solved with Krister Svanberg’s MMA routine [21] with multiple load cases
that comprise several frequencies for pressure and shear waves. The implementation is based on the min—-max
approach [22] and the final optimization problem is written:

min max(®,(w;), Ps(w;))
y ;i

subject to :  S(w)d = f(w;)
0<y<lI, (62)

in which @ = T + D + D, for the reflection problem and ¢ =1 — D for the dissipation problem. The
subscripts p and s refer to pressure and shear waves and w; is any of the frequencies that are considered. Thus,
the formulation in Eq. (62) states that the maximum value of the objective function @ for both wave types and
all frequencies is to be minimized by an optimized set of design variables y that fulfills the constraints.

6. Numerical example 1

In this first example the aim is to design a structure that reflects both P and S wave pulses. The wave pulse is
assumed to be narrow-band with center frequency f, and the main frequency content in a finite frequency
range near the center frequency. A possible application could be for isolation of structures from ground-borne
waves, e.g. coming from underground train tunnels. The properties of the materials used in this example have
been taken partly from studies of train-induced ground vibrations [23]. Table 1 lists the material properties of
the three materials that are used.

The optimized design should be a compromise between having a sufficient reflection of waves but also a
structure with manageable spatial dimensions. The length of the design domain slab, L, is chosen to be one
wavelength for a P wave in the host material. With a center frequency of f, = 788 Hz this gives L = 1 m.

Before optimized designs are generated the reflectance is computed for two structures with inclusions
of scattering material (scatter 1) placed periodically in the design domain. It is well known that periodi-
cally placed inclusions may cause bandgaps in the corresponding band structure which leads to high reflection.
This occurs if the material contrast is sufficiently high and the wavelength is commensurable with the
periodicity [1].

Fig. 3a shows a one-dimensional periodic structure, a Bragg-grating, and the corresponding reflectance
(Fig. 3b). Large frequency bands with high reflectance exist for pressure and shear waves, but they are off-set
due to the difference in wavelength. However, near the center frequency f, = 788 Hz high reflectance occurs
for both wave types. For the two-dimensional periodic structure (Fig. 4a) frequency bands with high

Table 1
Material properties used for the reflection example

Material p (kg/m?) E (MPa) v ", (57
Host (ground) 1550 269 0.257 —
Scatter 1 (ground) 2450 2040 0.179 —
Scatter 2 775 134.5 0.257 —

The material data for the two ground types is taken from Ref. [23].
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Fig. 3. (a) One-dimensional periodic structure (Bragg grating) with three inclusions of scatter 1 (black) in the host ground material (white);
(b) the corresponding reflected power R for P and S waves. P wave (solid line), S wave (dashed line).
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Fig. 4. (a) Two-dimensional triangular periodic structure with three rows of scatter 1 inclusions (black) in the host ground material
(white); (b) the corresponding reflected power R for P and S waves. P wave (solid line), S wave (dashed line).



330 J.S. Jensen | Journal of Sound and Vibration 301 (2007) 319-340

reflectance are also seen (Fig. 4b) but the reflectance is generally lower than for a Bragg-grating with the same
number of rows of inclusions. However, a 2D-structure is known better to reflect waves from different angles
of incidence [1]. The size of the inclusions were chosen after a simple parameter study so that a large
reflectance was obtained near /) = 788 Hz. It should be emphasized that a further improvement is possible by
using repetitive cells with an optimized material distribution [2]. However, the improvement that can be
obtained with further cell optimization is small due to the restricted design space.

6.1. Two-phase design

Thus, with two materials available a one-dimensional layered structure seems a good candidate as an
optimal design. However, as will be shown in this section this depends on whether the frequency range is
sufficiently small so that high reflectance bands for P and S waves can overlap. First the optimization is
performed for a relative small frequency range £10% away from the center frequency. Fig. 5 shows the
optimized design and the reflectance curves for pressure and shear waves. The design is a one-dimensional
structure with three inclusion layers of different thickness and with uneven spacing between them. Everywhere
in the target frequency range a high reflectance is obtained.

The target frequency range is now extended to £25% and Fig. 6a shows the optimized design (with 10
optimization frequencies in the target range). The design is no longer a one-dimensional layered structure since
such a structure cannot reflect both wave types sufficiently in the entire frequency range. Instead a
combination of a layered structure and a more intricate 2D material arrangement is seen. Fig. 6b shows that
the reflectance is more than 90% in the entire optimization range. Fig. 7 shows the corresponding wave
pattern for P and S waves at the center frequency and illustrates how wave amplitudes are attenuated in the
structure.

0.8

0.6

04

Reflectance, R

02  “x

0.0 | | | L | | |
0 200 400 600 800 1000 1200 1400 1600

Frequency [Hz]

Fig. 5. (a) Optimized distribution of scatter 1 (black) and host material (white) for maximum reflectance in a £10% frequency interval
around the center frequency f, = 788 Hz; (b) resulting reflectance curves for P and S waves. P wave (solid line), S wave (dashed line).



J.S. Jensen | Journal of Sound and Vibration 301 (2007) 319-340 331

a

0.8

Reflectance, R

02 b ..

0 200 400 600 800 1000 1200 1400 1600
Frequency [Hz]

0.0

Fig. 6. (a) Optimized distribution of scatter 1 (black) and host material (white) for maximum reflectance in a £25% frequency interval
around the center frequency f, = 788 Hz; (b) resulting reflectance curves for P and S waves. P wave (solid line), S wave (dashed line).
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Fig. 7. Wave patterns for the optimized structure computed for the center frequency f,, = 788 Hz: (a) abs(u) for a P wave and (b) abs(v) for
an S wave.
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It should be emphasized that other local optima can be found with different initial material distributions.
The design shown in Fig. 6a is the best structure found after an extensive search but it is not guaranteed to be
the global optimum. The problem with many local optima in wave-propagation problems is known and has to
the author’s knowledge not yet been solved. Genetic or other evolutionary algorithms are not easily applied to
this problem due to the large number of design variables (5000 or more).

6.2. Three-phase design

A more effective wave-reflecting structure can be obtained if the design domain length L is increased. This
allows for more inclusion layers in the structure and consequently higher reflectance. Also for larger L the
optimized design has a combined layered/2D appearance (as in Fig. 6a) so that it is effective in the entire
frequency range.

For situations where the spatial extent of the design domain is limited higher reflectance can be obtained
with increased contrast between the inclusion material and the host. This contrast can be quantified as the
ratio between the impedances (cf. Eq. (26)—(27)). Generally, the layout of the optimized designs is different for
different contrasts.

However, an additional scattering material does not seem to increase the reflectance. Extensive numerical
experiments showed in all cases that a design with those two materials having the highest contrast is always
better than a three-phase design. This supports previous studies that indicate that maximum contrast is
favorable for high wave reflection (cf. Section 4.1).

Fig. 8 illustrates this effect. A third material phase is introduced (Table 1) and the corresponding optimized
design (Fig. 8a) consists mainly of scatter 1 (gray) and scatter 2 (black) as they have the largest material
contrast. However, small areas of host material (white) are seen in the design. If these areas are replaced by
scattering material (Fig. 8b), the reflectance (Fig. 8c) is almost identical as for the optimized 3-phase design
and actually slightly better averaged over the target range. Thus, it can be concluded that the 3-phase
optimized design is a local optimum.

Quadratic elements were used for the displacement fields in the last example to increase the convergence and
stability of the optimization algorithm. However, although an improvement was noted the final design is still
unsymmetrical which is an indication of the instabilities in the optimization procedure. The design is also
dominated by small fragmented details. To remedy this problem, different filtering techniques could be applied
(e.g. Ref. [15]). This has not been examined further in this work.

7. Numerical example 2

In this second example the setting from the first example is kept but now the goal is to maximize the fraction
of the input power that is dissipated in the slab. An absorptive material phase with the properties of epoxy
(Table 2) is introduced. The damping coefficient is chosen arbitrarily as 17, = 0.05 s~! and the damping of the
other material phases is neglected. The importance of 77, will be investigated for the optimized designs. A third
material phase (scatter) is also introduced and it will be investigated how this can improve the performance of
the design. The material properties of this material are chosen so that the density is twice and the stiffness 20
times that of the host material.

The dissipated power fraction D is computed for the situation with the entire design domain filled up with
absorptive material. Fig. 9 shows the dissipation of a P and an S wave with 57, = 0.05 s~! and also for higher
values of 17,. Due to the impedance contrast between the two material phases a part of the incident wave is
reflected directly at the input boundary and consequently not all input power is dissipated regardless of the
magnitude of 7,,.

Thus, merely filling up the domain with absorptive material is not optimal for maximum dissi-
pation, although perhaps intuitively attractive. Instead, a good design must ensure a low direct reflection
at the input boundary and additionally ensure that the wave is not transmitted but reflected inside the
domain and then dissipated. The following sections demonstrate that such designs are generated by the
optimization algorithm.
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Fig. 8. (a) Optimized distribution of scatter 1 (gray), scatter 2 (black) and host (white); (b) 2-phase design with host replaced by scattering
material; (c) resulting reflectance curves for P and S waves. P wave (solid line), S wave (dashed line), P wave-2 phase (discrete circles), S
wave-2 phase (discrete crosses).

Table 2
Material properties for the materials used in the dissipation example

Material p (kg/m?) E (MPa) v 1, (s7)
Host (ground) 1550 269 0.257 —
Epoxy 2000 4000 0.400 0.05
Scatter 3100 5380 0.350 —

The material data for the ground is taken from Ref. [23].

7.1. Two-phase design

In this section host and the absorptive material are used for the optimization. Fig. 10a shows an optimized
design for shear and pressure waves in a +10% frequency range near the center frequency with 10
optimization frequencies used. The optimized design is complicated but with characteristic features. A thin



334 J.S. Jensen | Journal of Sound and Vibration 301 (2007) 319-340

a

0.8

0.6

04

Dissipation, D

02

0.0

0 200 400 600 800 1000 1200 1400 1600
Frequency [Hz]

0.8 1

0.6

04

Dissipation, D

02

0.0

0 200 400 600 800 1000 1200 1400 1600
Frequency [Hz]

Fig. 9. (a) Design domain filled with absorptive material (epoxy), corresponding dissipated energy fraction D for (b) P and (c) S waves for
four different values of #,. n, = 0.05s™" (solid), 7, = 0.50s~" (dash), 1, = 0.75s™" (dot), , = 1.00s™" (dash—dot).

inclusion slab at the input boundary modifies the effective impedance seen by the incident wave so that the
direct reflection is minimized. The thicker slab at the output boundary maximizes the reflection of the wave
that “escapes” through the domain. The inner parts of the domain are filled with strategically placed
inclusions that dissipate the high amplitude waves.

Fig. 10b shows curves for the dissipated power fraction. The dissipation is significantly increased in the
target range and is a factor 2—10 higher than for the case with the whole domain filled (Fig. 9). The dissipation
is also plotted for the same structure with a higher value of #,. It is noted that the dissipation approaches
unity. This implies that the structure effectively reduces the direct reflection and the transmission through the
domain to a minimum. This also indicates that the specific choice of 1, used in the optimization algorithm is
not critical for the generation of the optimized design. Fig. 11 shows the point-wise distribution of the
dissipated power for the two wave types computed at the center frequency. The dissipation of both wave types
is seen to be localized and concentrated in a few absorptive inclusions near the input boundary and in the inner
part of the domain.
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Fig. 10. (a) Optimized distribution of absorptive material (black) and loss-free host material (white) for maximum dissipation in a 10%
frequency interval around f, = 788 Hz; (b) corresponding dissipation of P and S waves. P wave n, = 0.05 s™! (solid), S wave 1, = 0.05 57!
(dash), P wave 5, = 0.75s™" (dot), S wave 5, = 0.75s~"! (dash—dot).

a
p-wave - dissipation
r ) 350
. 300
250
.' 200
* 150
- 100
x 50
0
s-wave - dissipation 250
# ‘ 200
' -~ 150
\ W 100
\ T 50
0

Fig. 11. Point-wise dissipated power for the optimized design for /) = 788 Hz: (a) a P wave and (b) an S wave. 5, = 0.05 sl
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7.2. Three-phase design

The extra scattering material is now included in an attempt to further improve the performance. The
hypothesis is that with a highly reflecting material available a larger part of the wave can be reflected leading to
higher wave amplitudes and higher dissipation. Fig. 12a shows the optimized design with gray as absorptive
material and black as scattering material. Qualitatively, the design is similar to the two-phase design. The
major difference is that the inclusion near the output boundary is made of the scattering material as the higher
impedance contrast leads to increased reflection. Additionally, two small reflecting inclusions are seen in the
inner part of the structure.

Fig. 12b shows the dissipated power fraction for the three-phase design. The improvement of the
performance is quite limited (from about 32% to about 35% in average) and although the details of the two-
phase and three-phase designs are different the performance in the target range is similar. Thus, it seems
possible to create many good optimized designs (local optima) with similar overall features but with different
structural details such as precise size and placement of the absorptive inclusions.

The effect of a refinement of the computational model and the use of higher-order finite elements is
illustrated in Fig. 13. Fig. 13a shows the optimized design with quadratic elements for the displacement fields
instead of linear elements. The higher-order elements stabilize the optimization algorithm (as for the reflection
example) and the small asymmetries in the design in Fig. 12a vanish. Apart from this the two designs are very
similar. Fig. 13b shows an optimized design with 100 x 100 linear elements in the design domain (80 x 80 used
in the other examples) and with 15 optimization frequencies in the target range (instead of 10 used in the other
examples). The overall features of the design are unchanged but the details are different. The numerical
instabilities are more severe and lead to a very unsymmetrical design. However, as illustrated in Fig. 13c, these
differences in the design are not reflected in the performance which is very similar in the target range.
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Fig. 12. (a) Optimized distribution of absorptive material (gray), host material (white), and scattering material (black) for maximum
dissipation in a £10% frequency interval around f, = 788 Hz; (b) corresponding dissipation of P and S waves compared to the two-phase
design in Fig. 10. P wave-3 phase (solid), S wave-3 phase (dash), P wave-2 phase (dot), S wave-2 phase (dash—dot). , = 0.05 sl
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Fig. 13. (a) Optimized design obtained with quadratic elements for the displacement amplitudes; (b) design obtained with refined mesh
and more optimization frequencies in the target range; (c) the corresponding dissipation for P and S waves. P wave-refined (solid), S wave-
refined (dash), P wave-quadratic (dot), S wave-quadratic (dash—dot). 7, = 0.05 sl

Fig. 14 shows the point-wise dissipated power computed at the center frequency for the structure gene-
rated with quadratic elements for the displacement fields. The dissipation is fairly well distributed for the P
wave and more localized near the input boundary for the S wave. The behavior of the optimized absorptive
structure is further examined in Fig. 15. The dissipation (D), reflectance (R), and transmittance (7) are
depicted for an S wave. As seen in Fig. 15a (17, = 0.05 s~!) the increase in dissipation in the target range
is accompanied by a large drop in R. However, the transmission 7 is relatively large due to the small
dissipation in the absorptive inclusions. If a material with a larger damping coefficient is used (7, = 0.75 s7h
the reflection R is again very small, but now almost all of the wave that propagates through the structure is
dissipated and consequently the transmission 7 of the wave is almost reduced to zero. Similar behavior is seen
for a P wave.

8. Conclusions

Two topology optimization problems for elastic wave propagation were considered. The objective of the
optimization study was to optimize the distribution of two or three material phases in a slab of material so that
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Fig. 14. Point-wise dissipated power for the optimized design for f;, = 788 Hz: (a) a P wave and (b) an S wave. 5, = 0.05 s7h

wave propagation was hindered. This was accomplished either by maximizing the reflection from the slab or
the wave dissipation in the slab.

A design domain was defined and parameterized with two continuous design fields that control the material
properties. With two design fields up to three different material phases could be distributed in the domain. A
penalization method based on artificial damping was introduced. The penalization was employed to ensure
well-defined material properties in the final design.

The optimization problems were formulated and discretized with a standard finite element method
and implemented with the commercial software COMSOL. The optimization problem was solved with
the aid of the mathematical programming software MMA, with analytical sensitivity analysis and a
min-max formulation so that pressure and shear waves for multiple wave frequencies could be
considered.

The use of the optimization algorithm was demonstrated by two application examples. The propagation of
a ground-borne wave pulse was suppressed by optimizing the material distribution in a square design domain.
In the first example scattering inclusions were distributed to maximize the wave reflection and in the second
example the wave dissipation was maximized with an optimized distribution of absorbing and scattering
inclusions.

The examples have demonstrated that large reflection of waves can be obtained by optimizing the
distribution of two material phases but also that adding a third phase with intermediate material properties
could not lead to further improvement. By optimizing the distribution of absorbing material the dissipation of
waves can be significantly enhanced and it was shown that the dissipation could be further increased by
including also a scattering material phase in the design optimization.
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Fig. 15. Dissipation D, reflectance R, and transmittance 7 for the optimized three-phase design in Fig. 13a for an S wave, (a) , = 0.05 s7!
and (b) n, = 0.75 s~!. Dissipation (solid), reflectance (dash), transmittance (dot).
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